Abstract
In the field of non-isolated light-emitting diode (LED) driver, the omnipresent buck-based LED constant current driver shows poor efficiency in occasions of high step-down ratio due to the marginal operating duty cycle. In order to overcome such drawback and to provide an alternative topological scheme for an LED driver, a Watkins-Johnson topology-based solution is proposed in this paper, by improving the original circuit structure into a dual low-side power switch version and introducing a feedback network for regulating the output current to a constant level. Theoretical analysis, including accurate model construction, steady-state analysis, dynamic analysis, and design consideration, is conducted. Also, an experimental prototype is realized to drive all kinds of LED arrays for acquiring electrical parameters and evaluating performance. The innovative points include invoking the low-side-ize approach to realize the power circuit transformation, and furthermore, theWatkins-Johnson topology is first applied to the constant current power supply. The proposed LED driver holds salient features of low-terminal current ripple, ease of driving, high-voltage conversion ratio tolerance, and inherent energy recovery functionality. The application scope covers low-voltage dc input or automotive lighting use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.