Abstract

Suppression-burst (SB) is an electroencephalographic pattern observed in neonatal- and infantile-onset developmental and epileptic encephalopathies (DEEs), which are associated with high mortality in early life. However, the relation of SB electroencephalogram (SB-EEG) with autonomic function requires clarification. We investigated the relationship between heart rate (HR) and phasic transition during SB-EEG in DEEs to explore the mechanism of early death. Seven patients (two with KCNT1-DEE) with neonatal- and infantile-onset DEE who presented with SB-EEG were retrospectively identified. Five-minute SB-EEGs were analyzed with simultaneous recording of electrocardiograms. Mean HR, suppression duration, and burst period were calculated by measuring RR intervals. Two patients with KCNT1-DEE exhibited synchronous HR fluctuations, with an HR decrease during suppression and an increase during burst. The HR decrease was larger (-6.1% and -7.7%) and the median duration of suppression was longer (4.0 and 8.2s) in patients with KCNT1-DEE than the other five (range: -2.9% to 0.9% and 0.7-1.7s, respectively). A strong negative correlation was confirmed between suppression duration and HR reduction rates in one patient with KCNT1-DEE. SB phases may influence HR regulation in patients with KCTN1-DEE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call