Abstract
Solution processed photodetectors with high responsivities and simple fabrication schemes are high on demand for variety of emerging opto-electronic applications. However, these devices suffer from sluggish response and recovery times. In this work, we demonstrate the simultaneous enhancement of the responsivity, response time and spectral range of detection in a solution-processed device based on organic/inorganic hybrid junction. A solution-processed flexible CdS photodetector is fabricated using a facile and economical chemical bath deposition technique. The fabricated pristine-CdS device exhibits responsivity and response time of 50 mA/W and 5.4 s. The resultant device exhibits enhanced responsivity and response time of around 740 mA/W and 0.6 s, respectively, upon modification with the PEDOT:PSS conducting polymer. These values of PEDOT-modified device are one order larger than pristine-CdS detector. Further, PEDOT:PSS modification also extends the responsivity of the device from UV-Vis to NIR spectra. NIR responsivity in the hybrid device, is imputed to the photothermal property of the PEDOT:PSS layer. Thus, the overall device spectral response is accredited to the simultaneous existence of photoelectric and photo-thermal phenomena. The observed responsivity and faster response time is ascribed primarily to the built-in potential at interface of CdS-PEDOT:PSS, which not only facilitates efficient separation of photo carriers but also leads to a reduction in the recombination of excitons. Given the simple approach and excellent enhancement in the device performance, the idea demonstrated here could be useful to design high performance opto-electronic device based on solution-processed techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.