Abstract

Haematococcus lacustris is a precious algal species renowned for its ability to simultaneous production of astaxanthin and lipid. However, its slow growth rate necessitates the development of appropriate mutagenesis methodologies to effectively enhance its synchronous production of both astaxanthin and lipid. This study introduced the co-mutation of Atmospheric and Room Temperature Plasma (ARTP) and ethanol. The performance and preliminary mechanisms underlying the combined accumulation of astaxanthin and lipid in H. lacustris under both mutations by ARTP and ethanol were comparatively analyzed. Combined astaxanthin and lipid contents relative to total cell mass in the 110–2 strain reached 54.4%, surpassing that of strain 0–3 and the control by 17.0% and 47.6% respectively. Transcriptome level analysis revealed how both ethanol and ARTP induction promote the expressions of carotenoid and lipid synthesis genes and related enzymatic activities. Upregulation of genes associated with cell activity contributed to lipid and astaxanthin metabolism in multi pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call