Abstract

Evidence indicates that the frequency-domain characteristics of surface electromyogram (EMG) signals are modulated according to the contributing sources of neural drive. Modulation of inter-muscular EMG synchrony within the Piper frequency band (30-60Hz) during movement tasks has been linked to drive from the corticospinal tract. However, it is not known whether EMG synchrony is sufficiently sensitive to detect task-dependent differences in the corticospinal contribution to leg muscle activation during walking. We investigated this question in seventeen healthy older men and women. It was hypothesized that, relative to typical steady state walking, Piper band EMG synchrony of the triceps surae muscle group would be reduced for dual-task walking (because of competition for cortical resources), similar for fast walking (because walking speed is directed by an indirect locomotor pathway rather than by the corticospinal tract), and increased when taking a long step (because voluntary gait pattern modifications are directed by the corticospinal tract). Each of these hypotheses was confirmed. These findings support the use of frequency-domain analysis of EMG in future investigations into the corticospinal contribution to control of healthy and disordered human walking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.