Abstract

In this work, a noble-metal-free composite electrode was prepared based on PMo12O403− (PMo12), C9H5FeO7 (MIL-100(Fe), a Fe-based metal organic framework) and polyvinylpyrrolidone (PVP), and served as a high performance electrochemical sensor for synchronous detection of dopamine (DA) and uric acid (UA). The PMo12@MIL-100(Fe)@PVP composite electrode was fabricated by a in-situ hydrothermal method. Thanks to the synergistic effect of three active components (PMo12, MIL-100 and PVP), the electrode possesses large specific surface area and high electrical conductivity and therefore it shows high electrocatalytic oxidation performance of DA and UA with a spacing of 0.146 V between the two peak positions. These benefits of the electrode enable its electrochemical sensor to synchronously detect of DA and UA. Namely, the linear ranges can achieve 1–247 μM for DA and 5–406 μM for UA. Meanwhile, the detection limits are 0.586 μM for DA and 0.372 μM for UA. Moreover, the sensor can be applied to simultaneous determination of UA and DA in human serums with satisfactory recovery values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.