Abstract

Numerical simulation is a common approach to understand many phenomena, usually yielding a computationally intensive problem. To overcome insufficient computer capacity and computational speed, a grid computing environment is a suitable approach. In this paper we focus on the development of parallel algorithms to solve a 3D transport model in such a context. The solver is based on the multisplitting Newton method that provides a coarse-grained scheme. Algorithms are implemented using JACE, a grid-enabled Java Asynchronous Computing Environment. This programming environment allows users to design synchronous and asynchronous parallel iterative algorithms as well. Experiments are carried out on a heterogeneous grid environment in which the behaviour of both parallel iterative algorithms is analysed. The results allow us to draw some conclusions about the use of the programming library JACE and the design of parallel iterative algorithms in a grid computing environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.