Abstract

Synchronous activity among ensembles of neurons is a robust phenomenon observed in many regions of the brain. With the increased use of multielectrode recording techniques, synchronous firing of ensembles of neurons has been found at all levels in the mammalian visual pathway, from the retina to the extrastriate cortex. Here we distinguish three categories of synchrony in the visual system, (a) synchrony from anatomical divergence, (b) stimulus-dependent synchrony, and (c) emergent synchrony (oscillations). Although all three categories have been well documented, their functional significance remains uncertain. We discuss several lines of evidence both for and against a role for synchrony in visual processing: the perceptual consequences of synchronous activity, its ability to carry information, and the transmission of synchronous neural events to subsequent stages of processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.