Abstract

AbstractThe concept of a synchronizing word is a very important notion in the theory of finite automata. We consider the associated decision problem to decide if a given DFA possesses a synchronizing word of length at most k, where k is the standard parameter. We show that this problem DFA-SW is equivalent to the problem Monoid Factorization introduced by Cai, Chen, Downey, and Fellows. Apart from the known $\textsf{W}[2]$ -hardness results, we show that these problems belong to $\textsf{A}[2]$ , $\textsf{W}[\textsf{P}],$ and $\textsf{WNL}$ . This indicates that DFA-SW is not complete for any of these classes, and hence, we suggest a new parameterized complexity class $\textsf{W}[\textsf{Sync}]$ as a proper home for these (and more) problems. We present quite a number of problems that belong to $\textsf{W}[\textsf{Sync}]$ or are hard or complete for this new class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.