Abstract

Large eddy simulations of turbulent flows are powerful tools used in many engineering and geophysical settings. Choosing the right value of the free parameters for their subgrid scale models is a crucial task for which the current methods present several shortcomings. Using a technique called nudging, we show that large eddy simulations can synchronize with data coming from a high-resolution direct numerical simulation of homogeneous and isotropic turbulence. Furthermore, we found that the degree of synchronization is dependent on the value of the parameters of the subgrid scale models utilized, suggesting that nudging can be used as a way to select the best parameters for a model. For example, we show that for the Smagorinsky model, synchronization is optimal when its constant takes the usual value of 0.16. Analyzing synchronization dynamics puts the focus on reconstructing trajectories in phase space, contrary to traditional a posteriori tests of large eddy simulations where the statistics of the flows are compared. These results open up the possibility of utilizing non-statistical analysis in a posteriori tests of large eddy simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.