Abstract

A system of precise pulse synchronization between a single-shot large-scale laser exploiting an acousto-optical modulator and a femtosecond high repetition rate laser is reported in this article. This opto-electronical system has been developed for synchronization of the sub-nanosecond kJ-class iodine photodissociation laser system (Prague Asterix Laser System-PALS) with the femtosecond 25-TW Ti:sapphire (Ti:Sa) laser operating at a repetition rate 1 kHz or 10 Hz depending on the required energy level of output pulses. At 1 kHz synchronization regime, a single femtosecond pulse of duration about 45 fs and a small energy less than 1 mJ are exploited as a probe beam for irradiation of a three-frame interferometer, while at 10 Hz repetition rate a single femtosecond pulse with higher energy about 7-10 mJ is exploited as a probe beam for irradiation of a two-channel polaro-interferometer. The synchronization accuracy ±100 ps between the PALS and the Ti:Sa laser pulses has been achieved in both regimes of synchronization. The femtosecond interferograms of laser-produced plasmas obtained by the three-frame interferometer and the femtosecond polarimetric images obtained by the two-frame polaro-interferometer confirm the full usefulness and correct functionality of the proposed method of synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.