Abstract

Solar-driven clean water production is challenged by VOCs (volatile organic compounds), which pose health risks in distilled water. Herein, we developed a Cu/W18O49@Graphene photothermal-photocatalytic material addressing VOCs contamination. Plasmonic coupling between Cu and W18O49 enhances light absorption, and 1-2 layers of graphene encapsulation protects oxygen vacancies within W18O49 while facilitating hot electron extraction, effectively mitigating their ultrafast relaxation. Density functional theory calculations revealed enhanced VOCs adsorption on graphene. These synergies address oxygen vacancy decay in W18O49 and provide more active sites for gas-liquid-solid triphase photocatalytic reactions. Integrated with a three-dimensional floating evaporator substrate, the optimized Cu/W18O49@Graphene material achieved an effective water evaporation rate of 1.41 kg m-2 h-1 (efficiency of 88.6%), exceptional stability (>120 h), and remarkable 99% phenol removal under 1 sun irradiation (1 kW m-2). This work provides a promising solution to mitigate VOCs contamination in solar-driven water evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call