Abstract

Synchronization is essential for the satisfactory operation of VSI in high power applications. With proper selection of switching states it is possible to obtain synchronization and symmetry in space vector pulse width modulation (SVPWM) algorithm. A novel SVPWM based switching algorithm, which results in improved THD and increased fundamental voltage in overmodulation region by maintaining synchronization and symmetry is presented in this paper. A simple method to determine the switching sequence to achieve synchronization, quarter wave symmetry, half wave symmetry and three phase symmetry in overmodulation region is presented. The proposed algorithm is simulated and its performance in terms of the THD and magnitude of fundamental voltage of output is studied in the overmodulation region. The results show the improved performance of the proposed algorithm compared to the existing algorithms. The proposed algorithm is verified experimentally on a constant v/f three level VSI fed induction motor drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call