Abstract

Traditional laser scanners for 3D distance measurement involve expensive, heavy, (potentially) slow rotating mirrors for light deflection of the scanning TOF (time of flight) distance measurement, not suitable for compact, robust and highly portable LIDAR system. On the other hand MEMS scanners are limited to small apertures not suitable for a precise TOF measurement. To overcome this problem Fraunhofer IPMS presents a large aperture 1D-MEMS scanner array especially designed for LIDAR applications. It is composed of 2 × 7 silicon mirror elements each having an identical design with comparatively large aperture of 2.51 × 9.51mm2 and ±30° optical scan range. All mirrors are driven electrostatically resonant with identical frequency close to design frequency of 250 Hz. By driving control all single scanner elements are synchronized to identical phase and amplitude in respect to a master scanner. This results in a large effective scanner aperture of 334 mm2 for the receiver optics and a filling factor of 80 %. To guarantee the synchronized operation the paper discusses in detail the scanner design to enable a sufficiently large frequency bandwidth of all scanner elements to the compensate frequency tolerances caused by fabrication and packaging. In comparison to LIDAR systems with conventional scanner components, the large aperture 1D-MEMS scanner array enables 3D-LIDAR systems to become significantly smaller, more robust and (potentially) less expensive, also higher scan rates can be realized without additional efforts (e.g. no air bearings are needed).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.