Abstract
Voltage fluctuations caused by rapidly changing loads, such as arc furnaces, can propagate to different parts of a power system. Although the flicker level at its origin can be high, levels that are measured at other sites are subject to attenuation, a process that is influenced by fault levels, transformer impedances, line impedances, and composition of the connected loads. This paper presents the methodology, measurement results, and data analysis in relation to synchronized flicker measurements carried out in a high-voltage (HV)/medium-voltage (MV) power system which contains an arc furnace supplied by a dedicated feeder connected to the HV busbar. The flicker transfer coefficients derived from measurement results clearly indicate that flicker transfer from the arc furnace site to the upstream HV busbar is governed by the fault levels at the two locations. However, the transfer of flicker from the upstream HV busbar to other downstream busbars is dependent on the downstream load composition. These flicker transfer coefficients are vital in the application of methodologies described in many reports and standards in relation to establishing planning levels at various voltage levels and in the allocation of flicker emission to customers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.