Abstract
The response of synchronously firing groups of population retinal ganglion cells (RGCs) to natural movies (NMs) and pseudo-random white-noise checker-board flickering (CB, as control) are investigated using an information-theoretic algorithm. The main results are: (1) the population RGCs tend to fire in synchrony far more frequently than expected by chance during both NM and CB stimulation; (2) more synchronous groups could be formed and each group contains more neurons under NM than CB stimulation; (3) the individual neurons also participate in more groups and have more distinct partners in NM than CB stimulation. All these results suggest that the synchronized firings in RGCs are more extensive and diverse, which may account for more effective information processing in representing the natural visual environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.