Abstract
<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Orthogonal frequency division multiple access (OFDMA) has recently attracted vast research attention from both academia and industry and has become part of new emerging standards for broadband wireless access. Even though the OFDMA concept is simple in its basic principle, the design of a practical OFDMA system is far from being a trivial task. Synchronization represents one of the most challenging issues and plays a major role in the physical layer design. The goal of this paper is to provide a comprehensive survey of the latest results in the field of synchronization for OFDMA systems, with tutorial objectives foremost. After quantifying the effects of synchronization errors on the system performance, we review some common methods to achieve timing and frequency alignment in a downlink transmission. We then consider the uplink case, where synchronization is made particularly difficult by the fact that each user's signal is characterized by different timing and frequency errors, and the base station has thus to estimate a relatively large number of unknown parameters. A second difficulty is related to how the estimated parameters must be employed to correct the uplink timing and frequency errors. The paper concludes with a comparison of the reviewed synchronization schemes in an OFDMA scenario inspired by the IEEE 802.16 standard for wireless metropolitan area networks. </para>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.