Abstract

We study synchronization regimes in a system of two coupled noisy excitable systems which exhibit excitability close to an Andronov bifurcation. The uncoupled system possesses three fixed points: a node, a saddle, and an unstable focus. We demonstrate that with an increase of coupling strength the system undergoes transitions from a desynchronous state to a train synchronization regime to a phase synchronization regime, and then to a complete synchronization regime. Train synchronization is a consequence of the existence of a saddle in the phase space. The mechanism of transitions in coupled noisy excitable systems is different from that in coupled phase-coherent chaotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.