Abstract

Transistor-based chaotic oscillators are known to realize highly diverse dynamics despite having elementary circuit topologies. This work investigates, numerically and experimentally using a ring network, a recently-introduced dual-transistor circuit that generates neural-like spike trains. A multitude of non-trivial effects are observed as a function of the supply voltage and coupling strength, including pattern formation under incomplete synchronization and sensitivity to additional long-distance links. Globally-applied noise exerts a synchronizing effect that interacts with the other control parameters. When the network is partitioned in halves at different levels of granularity, their interplay gives rise to adversarial route-to-synchronization phenomena. These results highlight the generative ability of this circuit and motivate its consideration towards the future realization of physical reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call