Abstract

The paper presents a novel synchronization scheme for uncertain chaotic systems via complete-adaptive-impulsive controls. The controllers are designed in the form of linear-error feedback coupling, but the control gains are completely adaptive. More details on minimizing interaction terms and accelerating synchronization process are revealed. The interaction terms can be selected on the largest invariant set minimally, but would be optimized corroboratively to promote the stabilization. The analytic expressions of parameter update laws for identifying uncertain parameters are derived from a reasonable truncation directly. A representative chaotic system is employed to show that the present scheme is not only a tactful way of synchronizing chaotic systems with uncertainties imposed on nonlinear terms, but a more radical approach on achieving synchronization with relatively moderate control gains than existed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call