Abstract
The system of weakly coupled differential equations describing traveling waves in dispersive media is considered. The Lyapunov — Schmidt construction is used to study the branching of cnoidal-type periodic solutions. The analysis of bifurcation equations uses the group symmetry and cosymmetry of original equations. Sufficient condition for existence of the phase-shifted modes of cnoidal waves is formulated in terms of the Pontryagin's function determined by the nonlinear perturbation terms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.