Abstract

This brief studies the distributed synchronization of time-delay coupled neural networks (NNs) with impulsive pinning control involving stabilizing delays. A novel differential inequality is proposed, where the state's past information at impulsive time is effectively extracted and used to handle the synchronization of coupled NNs. Based on this inequality, the restriction that the size of impulsive delay is always limited by the system delay is removed, and the upper bound on the impulsive delay is relaxed, which is improved the existing related results. By using the methods of average impulsive interval (AII) and impulsive delay, some relaxed criteria for distributed synchronization of time-delay coupled NNs are obtained. The proposed synchronization conditions do not impose on the upper bound of two consecutive impulsive signals, and the lower bound is more flexible. Moreover, our results reveal that the impulsive delays may contribute to the synchronization of time-delay systems. Finally, typical networks are presented to illustrate the advantage of our delayed impulsive control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call