Abstract

The Fitzhugh-Nagumo equations (FHN) provide a simple description of the dynamics of a large class of neurons. We characterize synchronization and stochastic resonance in this model using two complementary points of view: the signal-to-noise ratio (SNR), and the absolute as well as normalized peak heights of the interspike interval histograms (ISIHs). At low stimulus frequencies, multiple firings can occur during one period, while at high frequencies, the refractoriness precludes firing at every cycle. The behaviors of the SNR and ISIHs are thus investigated at low, medium and high frequencies to illustrate special synchronization properties of the FHN system. In particular, the behavior of the SNRvs. noise is found to be similar for forcing amplitudes just below and above that at which a 2:1 deterministic phase-locked firing solution becomes stable. Our results rely on an accurate method of estimation of the power spectrum of the point process formed by the firing times. A theoretical analysis for the shape of the simulated power spectra is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.