Abstract
In this work we are interested in a mathematical model of the collective behavior of a fully connected network of finitely many neurons, when their number and when time go to infinity. We assume that every neuron follows a stochastic version of the Hodgkin-Huxley model, and that pairs of neurons interact through both electrical and chemical synapses, the global connectivity being of mean field type. When the leak conductance is strictly positive, we prove that if the initial voltages are uniformly bounded and the electrical interaction between neurons is strong enough, then, uniformly in the number of neurons, the whole system synchronizes exponentially fast as time goes to infinity, up to some error controlled by (and vanishing with) the channels noise level. Moreover, we prove that if the random initial condition is exchangeable, on every bounded time interval the propagation of chaos property for this system holds (regardless of the interaction intensities). Combining these results, we deduce that the nonlinear McKean-Vlasov equation describing an infinite network of such neurons concentrates, as time goes to infinity, around the dynamics of a single Hodgkin-Huxley neuron with chemical neurotransmitter channels. Our results are illustrated and complemented with numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.