Abstract

A recently formulated general timing model of synchronous operation is applied to the special case of latch-controlled pipelined circuits. The model accounts for multiphase synchronous clocking, correctly captures the behavior of label-sensitive latches, handles both short- and long-path delays, accommodates wave pipelining, and leads to a comprehensive set of timing constraints. Concurrency of pipeline circuits is defined as a function of the clock schedule and degree of wave pipelining. The authors then identify a special class of clock schedules, coincident multiphase clocks, which provide a lower bound on the value of the optimum cycle time. It is shown that the region of feasible solutions for single-phase clocking can be nonconvex or even disjoint, and a closed-form expression for the minimum cycle time of a restricted but practical form of single-phase clocking is derived. The authors compare these forms of clocking on three pipeline examples and highlight some of the issues in pipeline synchronization. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.