Abstract

We present analytical calculations and numerical simulations for the synchronization of oscillators interacting via a long-range power law interaction on a one-dimensional lattice. We have identified the critical value of the power law exponent α(c) across which a transition from a synchronized to an unsynchronized state takes place for a sufficiently strong but finite coupling strength in the large system limit. We find α(c)=3/2. Frequency entrainment and phase ordering are discussed as a function of α≥1 . The calculations are performed using an expansion about the aligned phase state (spin-wave approximation) and a coarse graining approach. We also generalize the spin-wave results to the d -dimensional problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.