Abstract
This paper considers the self-synchronization and tracking synchronization issues for a class of nonidentically coupled neural networks model with unknown parameters and diffusion effects. Using the special structure of neural networks with global Lipschitz activation function, nonidentical terms are treated as external disturbances, which can then be compensated via robust adaptive control techniques. For the case where no common reference trajectory is given in advance, a distributed adaptive controller is proposed to drive the synchronization error to an adjustable bounded area. For the case where a reference trajectory is predesigned, two distributed adaptive controllers are proposed, respectively, to address the tracking synchronization problem with bounded and unbounded reference trajectories, different decomposition methods are given to extract the heterogeneous characteristics. To avoid the appearance of global information, such as the spectrum of the coupling matrix, corresponding adaptive designs on coupling strengths are also provided for both cases. Moreover, the upper bounds of the final synchronization errors can be gradually adjusted according to the parameters of the adaptive designs. Finally, numerical examples are given to test the effectiveness of the control algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.