Abstract

AbstractIn this work, under a repeatable control environment, an adaptive iterative learning control method is applied to synchronize a group of uncertain heterogeneous agents. The agent dynamics are modeled by nonlinear equations, which contain both parametric and non‐parametric uncertainties. Furthermore, the uncertainties are assumed to be general nonlinear terms instead of the global Lipschitz functions. The communication among the followers is depicted by an undirected and connected graph, meanwhile, the virtual leader's trajectory is only accessible to a small portion of the followers. The proposed learning rules enable all the followers to learn and handle both parametric and non‐parametric uncertainties based on the local information such that the followers can synchronize their trajectories to the desired one. In comparison with the existing literature, most works assume first or second order nonlinear systems, and perfect initial conditions. In order to mitigate the identical initialization condition, the applicability of alignment condition and initial rectifying action are further explored. In addition, our developed algorithms can be applied to general high order nonlinear systems. Finally, synchronization examples of networked robotic manipulators are presented to demonstrate the effectiveness of the developed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.