Abstract

Discrete fractional models with reaction-diffusion have gained significance in the scientific field in recent years, not only due to the need for numerical simulation but also due to the stated biological processes. In this paper, we investigate the problem of synchronization-control in a fractional discrete nonlinear bacterial culture reaction-diffusion model using the Caputo h-difference operator and a second-order central difference scheme and an L1 finite difference scheme after deriving the discrete fractional version of the well-known Degn–Harrison system and Lengyel–Epstein system. Using appropriate techniques and the direct Lyapunov method, the conditions for full synchronization are determined.Furthermore, this research shows that the L1 finite difference scheme and the second-order central difference scheme may successfully retain the properties of the related continuous system. The conclusions are proven throughout the paper using two major biological models, and numerical simulations are carried out to demonstrate the practical use of the recommended technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.