Abstract

This paper focuses on the synchronization of fractional-order complex-valued neural networks (FOCVNNs) with reaction–diffusion terms in finite-time interval. Different from the existing complex-valued neural networks (CVNNs), the reaction–diffusion phenomena and fractional derivative are first considered into the system, meanwhile, the parameter switching (the system parameters will switch with the state) is considered, which makes the presented model more comprehensive. By choosing an appropriate Lyapunov function, the driver and response systems achieve Mittag-Leffler synchronization under a suitable controller. In addition, based on the fractional calculus theorem and the basic inequality methods, a criterion of synchronization for the error system in finite-time interval is derived and the upper bound of the corresponding finite synchronization time can be obtained. Finally, two examples are provided, one is a numerical example to explain the effectiveness of the main results, and the other shows that the results of this paper can be applied to image encryption for any size with high-security coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.