Abstract
By using a Lyapunov‐Krasovskii functional method and the stochastic analysis technique, we investigate the problem of synchronization for discrete‐time stochastic neural networks (DSNNs) with random delays. A control law is designed, and sufficient conditions are established that guarantee the synchronization of two identical DSNNs with random delays. Compared with the previous works, the time delay is assumed to be existent in a random fashion. The stochastic disturbances are described in terms of a Brownian motion and the time‐varying delay is characterized by introducing a Bernoulli stochastic variable. Two examples are given to illustrate the effectiveness of the proposed results. The main contribution of this paper is that the obtained results are dependent on not only the bound but also the distribution probability of the time delay. Moreover, our results provide a larger allowance variation range of the delay, and are less conservative than the traditional delay‐independent ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.