Abstract

In this paper, synchronization issue of discrete-time fractional fuzzy neural networks (DFFNNs) with delays is solved via quantized control, and is applied in image encryption. Firstly, a novel fractional-order h-difference inequality which makes Lyapunov method more flexible and practical is strictly proved based on the properties of convex functions and theory of discrete fractional calculus. Secondly, by using compression mapping theorem and mathematical induction, we obtain two sufficient conditions to ensure the existence and uniqueness of solutions for DFFNNs. Whereafter, we design a suitable quantized controller, which not only saves channel resources but also reduces control costs. By utilizing our inequality and some analytical techniques, several conservative synchronization criteria for DFFNNs are acquired. Finally, two examples are arranged to illustrate the validity and practicability of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.