Abstract

This paper addresses synchronization problem for discrete-time complex dynamical networks with interval time-varying delays. In order to achieve the synchronization, a feedback controller subjected to randomly occurring perturbations will be considered. The randomly occurring perturbations are assumed to belong to the Binomial sequence. By constructing a suitable Lyapunov–Krasovskii functional, and utilizing reciprocally convex approach and Finsler׳s lemma, the synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. The networks are represented by the use of Kronecker product technique. The effectiveness of the proposed methods will be verified via numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call