Abstract
This article investigates the event-triggered synchronization of delayed neural networks (NNs). A novel integral-based event-triggered scheme (IETS) is proposed where the integral of the system states, and past triggered data over a period of time are used. With the proposed IETS, the integral event-triggered synchronization problem becomes a distributed delay problem. Using the Bessel-Legendre inequalities, sufficient conditions for the existence of a controller that ensures asymptotic synchronization are provided in the form of linear matrix inequalities (LMIs). Illustrative examples are used to demonstrate the advantages of the proposed IETS method over other event-triggered scheme (ETS) methods. Moreover, this IETS method is applied to the image encryption and decryption. A novel encryption algorithm is proposed to enhance the quality of the encryption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.