Abstract

In this article, a novel pinning control method, only requiring information from partial nodes, is developed to synchronize drive-response memristor-based neural networks (MNNs) with time delay. An improved mathematical model of MNNs is established to describe the dynamic behaviors of MNNs accurately. In the existing literature, pinning controllers for synchronization of drive-response systems were designed based on information of all nodes, but in some specific situations, the control gains may be very large and challenging to realize in practice. To overcome this problem, a novel pinning control policy is developed to achieve synchronization of delayed MNNs, which depends only on local information of MNNs, for reducing communication and calculation burdens. Furthermore, sufficient conditions for synchronization of delayed MNNs are provided. Finally, numerical simulation and comparative experiments are conducted to verify the effectiveness and superiority of the proposed pinning control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.