Abstract

In this paper, the globally exponential synchronization of delayed complex dynamical networks with impulsive and stochastic perturbations is studied. The concept named “average impulsive interval” with “elasticity number” of impulsive sequence is introduced to get a less conservative synchronization criterion. By comparing with existing results, in which maximum or minimum of impulsive intervals are used to derive the synchronization criterion, the proposed synchronization criterion increases (or decreases) the impulse distances, which leads to the reduction of the control cost (or enhance the robustness of anti-interference) as the most important characteristic of impulsive synchronization techniques. It is discovered in our criterion that “elasticity number” has influence on synchronization of delayed complex dynamical networks but has no influence on that of non-delayed complex dynamical networks. Numerical simulations including a small-world network coupled with delayed Chua’s circuit are given to show the effectiveness and less conservativeness of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.