Abstract

The effect of the transfer rate of signal molecules on coupled chemical oscillators arranged on a two-dimensional plane was systematically investigated in this paper. A microreactor equipped with a surface acoustic wave (SAW) mixer was applied to adjust the transfer rate of the signal molecules in the microreactor. The SAW mixer with adjustable input powers provided a simple means to generate different mixing rates in the microreactor. A robust synchronization of the oscillators was found at an input radio frequency power of 20 dBm, with which the chemical waves were initiated at a fixed site of the oscillator system. With increasing input power, the frequency of the chemical waves was increased, which agreed well with the prediction given by the time-delayed phase oscillator model. Results from the finite element simulation agreed well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.