Abstract

Abstract In this paper, a class of Cohen-Grossberg fuzzy cellular neural networks (CGFCNNs) with time-varying delays are considered. Initially, the sufficient conditions are proposed to ascertain the existence and uniqueness of the solutions for the considered dynamical system via homeomorphism mapping principle. Then synchronization of the considered delayed neural networks is analyzed by utilizing the drive-response (master-slave) concept, in terms of a linear matrix inequality (LMI), the Lyapunov-Krasovskii (LK) functional, and also using some free weighting matrices. Next, this result is extended so as to establish the robust synchronization of a class of delayed CGFCNNs with polytopic uncertainty. Sufficient conditions are proposed to ascertain that the considered delayed networks are robustly synchronized by using a parameter-dependent LK functional and LMI technique. The restriction on the bounds of derivative of the time delays to be less than one is relaxed. In particular, the concept of fuzzy theory is greatly extended to study the synchronization with polytopic uncertainty which differs from previous efforts in the literature. Finally, numerical examples and simulations are provided to illustrate the effectiveness of the obtained theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.