Abstract
Recent advances have demonstrated the effectiveness of a machine-learning approach known as "reservoir computing" for model-free prediction of chaotic systems. We find that a well-trained reservoir computer can synchronize with its learned chaotic systems by linking them with a common signal. A necessary condition for achieving this synchronization is the negative values of the sub-Lyapunov exponents. Remarkably, we show that by sending just a scalar signal, one can achieve synchronism in trained reservoir computers and a cascading synchronization among chaotic systems and their fitted reservoir computers. Moreover, we demonstrate that this synchronization is maintained even in the presence of a parameter mismatch. Our findings possibly provide a path for accurate production of all expected signals in unknown chaotic systems using just one observational measure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.