Abstract

We report on chaos synchronization in both unidirectionally and bidirectionally coupled multiple time delay laser diodes with electro-optical feedback. We derive existence and sufficient stability conditions for the synchronization regimes. We calculate the Lyapunov exponents, information dimension, and Kolmogorov–Sinai entropy for a single and double delay time lasers to demonstrate that multiple time delay laser system can offer higher complexity than a single time delay laser. We demonstrate that in coupled multiple time delay lasers additional feedback(s) can play a stabilizing role. We compare the synchronization quality for closed loop and open loop receiver laser configurations and find better synchronization quality for partially open loop receiver (when the receiver laser has only one feedback loop), than the open loop receiver configuration (when the receiver contains no feedback loops). We also study the effect of the feedback phase on the correlation coefficient between the interacting laser systems. Analytical results are fully supported by numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call