Abstract

To date, methods for synchronizing the cell division of ungulate embryos without reducing their developmental potential have not been reliable or simple. The overall objective of this study was to determine the reliability of aphidicolin, a powerful inhibitor of eukaryotic DNA synthesis, to arrest and synchronize blastomere division in cleavage-stage bovine embryos and to assess its reversibility and toxicity in vitro. Eight-cell stage embryos obtained at 58 h post insemination were treated with several concentrations of aphidicolin for 12 h. Treated embryos were assessed for cleavage arrest, chromatin morphology and DNA synthesis; scored for blastocyst formation and hatching rate; and fixed for determination of the number of nuclei. Complete arrest of cell division was observed at aphidicolin concentrations of 1.4 μM and above. At these concentrations, no morphological alteration to interphase chromatin was observed in treated embryos compared with the controls. Removal of aphidicolin led to at least a 4-h delay before resumption of DNA synthesis and cleavage. The ability of treated embryos to reach the blastocyst stage in vitro, the hatching rate and the number of cells per blastocyst were significantly reduced compared with the control group. Since the ability of treated embryos to develop to the blastocyst stage was significantly reduced even at the minimal effective dosage, it is concluded that aphidicolin is unlikely to provide suitable cell cycle synchronization without damage to the embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call