Abstract
PurposeHeterophoria describes the deviation of the optical axes in the absence of binocular fusion. Eye trackers (ET) can provide an objective assessment but are not broadly used clinically. We examined the feasibility of combining an infrared (IR) pass-filter, IR detector, and an off-the-shelf ET. The proposed setup was validated against the broadly used cover test (CT). Furthermore, the setup was used to examine whether testing conditions can affect the measurements.MethodsAn IR detector was attached to a handheld IR-pass filter that blocks visible light to provide occlusion while passing IR light for eye tracking. The detector senses the IR illumination of the eye tracker, creating a recordable signal of the occluder position synchronized with eye positions acquired by the SMI Red250 tracker. The mean of three measurements of each condition, three versus ten seconds occlusion, the occluded eye, and ET versus CT results were compared using the Wilcoxon test, correlation and Bland and Altman plots. Differences between measurements that were within 2Δ were considered clinically insignificant.ResultsThirty normally-sighted subjects (mean age 24.50 ± 2.20, range 20–28) with heterophoria ranging between 14Δ exophoria and 4Δ esophoria were recruited. There was no significant difference between the occluded eyes. However, there was a difference between 3 and 10 seconds’ cover duration. The CT data were more similar to the 10 seconds cover duration, although differences were less than the clinical resolution of 2Δ.ConclusionsAn inexpensive off-the-shelf ET can be used to measure heterophoria with controlled testing parameters.Translational RelevanceOur study demonstrated a robust technique for synchronization of an optical element such as an IR cover, with an off-the-shelf commercial eye tracker. The synchronization of optical elements with eye tracking, which has been described here for heterophoria, can be adapted for other clinical measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.