Abstract

We study the dynamics of a mechanical oscillator with linear and cubic forces – the Duffing oscillator — subject to a feedback mechanism that allows the system to sustain autonomous periodic motion with well-defined amplitude and frequency. First, we characterize the autonomous motion for both hardening and softening nonlinearities. Then, we analyze the oscillator’s synchronizability by an external periodic force. We find a regime where, unexpectedly, the frequency range where synchronized motion is possible becomes wider as the amplitude of oscillations grows. This effect of nonlinearities may find application in technological uses of mechanical Duffing oscillators – for instance, in the design of time-keeping devices at the microscale – which we briefly review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.