Abstract
AbstractThis paper proposes a new state‐feedback stabilization control technique for a class of uncertain chaotic systems with Lipschitz nonlinearity conditions. Based on Lyapunov stabilization theory and the linear matrix inequality (LMI) scheme, a new sufficient condition formulated in the form of LMIs is created for the chaos synchronization of chaotic systems with parametric uncertainties and external disturbances on the slave system. Using Barbalat's lemma, the suggested approach guarantees that the slave system synchronizes to the master system at an asymptotical convergence rate. Meanwhile, a criterion to find the proper feedback gain vector F is also provided. A new continuous‐bounded nonlinear function is introduced to cope with the disturbances and uncertainties and obtain a desired control performance, i.e. small steady‐state error and fast settling time. Several criteria are derived to guarantee the asymptotic and robust stability of the uncertain master–slave systems. Furthermore, the proposed controller is independent of the order of the system's model. Numerical simulation results are displayed with an expected satisfactory performance compared to the available methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.