Abstract

Previously, we have theoretically studied the possibility of electrical rhythmic entrainment of carrier-mediated ion transporters, and experimentally realized synchronization and acceleration of the Na/K pumping rate in the cell membrane of skeletal muscle fibers by a specially designed synchronization modulation electric field. In these studies we either used cut fibers under a voltage clamp or intact fibers, but in the presence of ion channels blockers. A question remained as to whether the field-induced activation observed in the pump molecules could effectively increase the intracellular ionic concentration and the membrane potential at physiological conditions. In this paper, we studied the effects of the field on intact fibers without any channel blockers. We monitored the field-induced changes in the ionic concentration gradient across the cell membrane and the membrane potential non-invasively by using a fluorescent probe and confocal microscopic imaging techniques. The results clearly show that the entrainment of the pump molecules by the synchronization modulation electric field can effectively increase the ionic concentration gradient, and hence, hyperpolarize the membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.