Abstract

The purpose of the present paper is to develop a method, based on equal-time correlation, correlation matrix analysis and surrogate resampling, that is able to quantify and describe properties of synchronization of population neuronal activity recorded simultaneously from multiple sites. Initially, Lorenz-type oscillators were used to model multiple time series with different patterns of synchronization. Eigenvalue and eigenvector decomposition was then applied to identify "clusters" of locally synchronized activity and to calculate a "global synchronization index." This method was then applied to multichannel data recorded from an in vitro model of epileptic seizures. The results demonstrate that this novel method can be successfully used to analyze synchronization between multiple neuronal population series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.