Abstract
We demonstrate tunable dissipative interactions between optically trapped exciton-polariton condensates. We apply annular shaped nonresonant optical beams to both generate and confine each condensate to their respective traps, pinning their natural frequencies. Coupling between condensates is realized through the finite escape rate of coherent polaritons from the traps leading to robust phase locking with neighboring condensates. The coupling is controlled by adjusting the polariton propagation distance between neighbors. This permits us to map out regimes of both strong and weak dissipative coupling, with the former characterized by clear in-phase and anti-phase synchronization of the condensates. With robust single-energy occupation governed by dissipative coupling of optically-trapped polariton condensates, we present a system which offers a potential optical platform for the optimization of randomly connected $XY$ Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.