Abstract
We study synchronization processes in networks of slightly nonidentical chaotic systems, for which a complete invariant synchronization manifold does not rigorously exist. We show and quantify how a slightly dispersed distribution in parameters can be properly modeled by a noise term affecting the stability of the synchronous invariant solution emerging for identical systems when the parameter is set at the mean value of the original distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.