Abstract

The present paper is mainly concerned with the issues of synchronization dynamics of complex delayed dynamical networks with impulsive effects. A general model of complex delayed dynamical networks with impulsive effects is formulated, which can well describe practical architectures of more realistic complex networks related to impulsive effects. Based on impulsive stability theory on delayed dynamical systems, some simple but less conservative criterion are derived for global synchronization of such dynamical network. It is shown that synchronization of the networks is heavily dependent on impulsive effects of connecting configuration in the networks. Furthermore, the theoretical results are applied to a typical SF network composing of impulsive coupled chaotic delayed Hopfield neural network nodes, and are also illustrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.