Abstract

This paper describes the concept and implementation details of the synchronization mechanisms used in the control and data-acquisition system of the RFX (Reversed-Field Experiment) nuclear-fusion experimental device, at present under construction in Padova, Italy, within the framework of the co-ordinated nuclear-fusion research programme of the European Communities. The system employs industrial PLCs for the “slow” control and monitoring functions, and a VAX-based CAMAC for the “fast” functions of trigger-signal generation and data acquisition during the experiment pulses. All subsystems communicative via Ethernet, using compatible software protocols. The operational sequence of the complete system is governed by a single state machine implemented on a PLC-based supervisor system. Equivalent “slave” state machines are implemented on all other subsystems (PLC-and VAX-based). These state machines are synchronized by means of the exchange of messages via Ethernet. This paper deals in detail with the following components which are involved in system synchronization: • - the Message Exchange System which implements the system-wide exchange of short messages; • - the Scheduler programs which implement the state machine on the various computing nodes, and which make use of the Message Exchange System.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call